
3 1 - -  (1 - -  q) ~ [ 2 + q + ( 3 q - - 2 ) . % -  ] d 
u s , = - ~ a , ~  - - ( 1 - - q )  a T 1-- 1 - - ( 1 - - q )  a o bp/10 dy lnT, ~=~l/P. (10) 

In the l imi t  e a se s  of pure  diffusion (q = 1) and p u r e  specu la r  (q = 0) ref lec t ion,  we obtain 

d 
u,z= 1.69~t (1 - -  0~337bp) In T, (11) 

dy 

3 d 
u~ = ~--~x(1-.0.2bp) InT. �9 dy (12) 

F o r m u l a s  (10)-(11) di f fer  f rom the cor responding  fo rmu la s  for  a r a r e f i ed  gas  by t e r m s  propor t iona l  to 
bp.  As p --* 0, e x p r e s s i o n s  (10)-(12) go o v e r  into the cor responding  exp res s ions  in [2]. 

Let  us de te rmine  the t h e r m a l  slip coefficient  as follows: 

d 
u,z = k~d~ In T. 

dy 

Then it  follows f r o m  (10)-(12) that  the t h e r m a l  sl ip coeff icient  k s / i s  l ess  in dense than in r a r e f i ed  g a s e s .  

1 .  

2. 

3. 

4. 

L I T E R A T U R E  C I T E D  

S. Chapman and T. G. Cowling, Mathemat ica l  Theory  of Non-Uniform Gases ,  Cambridge Univ. P r e s s  
(1970). 
I. N. Ivchenko and Yu. I. Yalamov,  nTherma l  sl ip of an inhomogeneous heated gas along a solid f lat  
su r f ace , "  Izv.  Akad. Nauk SSSR, Mekh. Zhidk. Gaza,  No. 6 (1969). 
B. V. Deryag in ,  Yu. I. Yalamov,  and I. N. Ivchenko,  "Application of the Bhatnagar ,  Gross ,  and 
Krook method to de te rmine  the t h e r m a l  sl ip veloci ty  of a gas n e a r  a solid su r f ace , "  Dokl. Akad. Nauk 
SSSR, 173, No. 6 (1967). 
P. L. Bha tnagar ,  E.  P. G r o s s ,  and M. A. Krook,  "A model  fo r  coll ision p r o c e s s e s  in ga se s , "  Phys.  
Rev. ,  9__4, No. 3, 511 (1954). 

P E C U L I A R I T I E S  IN  T H E  O N E - D I M E N S I O N A L  M O D E L  

OF R A D I A N T  H E A T  E X C H A N G E  

A .  S .  N e v s k i i  a n d  M .  M .  M e l ' m a n  UDC 536.3.001.24 

Radiant hea t  exchange is  cons idered  in a one-d imens iona l  model .  The role of in ternal  heat 
t r a n s f e r  i s  cons idered .  Maximum and min imum heat  l ibera t ion  values  a re  de te rmined .  A 
method for  calculat ion is p roposed .  

The m o s t  widely used model  for  study of radiant  heat  exchange in a furnace is  the one-d imens ional  model .  
In such a model  the furnace ope ra t i ng  space is  l ikened to a channel ,  along which the exhaust  gases  move .  The 
gas  t e m p e r a t u r e  along the d i rec t ions  pe rpend icu la r  to the motion is a s sumed  constant .  There  is no theore t ica l  
just i f icat ion for  the use of such a model .  

We will wri te  the ene rgy  equation of an e l e m e n t a r y  volume in the following fo rm:  
l 

W dT h~,_F(z) es%(Ta-T~) -- 1 f f dz ~- q e =  f ~- J qit(z, zk) dzt,, (1) 
0 

where 

Hr_p(z ,  H) Az ~0;  (2) 
h~_ r (z) --  Az ' 

All-Union Sc ien t i f i c -Resea rch  Institute of Meta l lurgica l  Thermotechnology,  Sverdlovsk.  Trans la ted  
f r o m  Inzhenerno-F iz ichesk i i  Zhurnal ,  Vol. 37, No. 2, pp. 278-284, August,  1979. Original ar t ic le  submit ted 
November  20, 1978. 
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H~_ F (z, H) is the resolving coefficient for  mutual radiant  heat exchange between the elemental  volume and the 
sur face  H; 

qit (z, z~) = hr_v (z, zk) (T ~ (z) - -  T~ (zk)); (3) 
r 

hr_v = lira Hv_ V(z, zn) , 
az,aza ~o Az, Az~ 

r 
where HV_V(Z , z k) is the resolving coefficient for  mutual radiant heat exchange between e lementary  volumes.  
F r o m  Eq. (3) it follows that 

qii (z, zh) = - -  qit (Zk, Z). 

The quantity Qit = qit (z, Zk)AZAZk defines the quantity of heat obtained by the elemental  volume Zkz k f rom 
another volume. We will t e rm this quantity the internal t r ans fe r  heat (ITH). 

If we have two modes of heat exchange with identical values of qit for all the gases z, Zk, we then assume 
that the ITHis  identical  for  all. But if for  all or  some pai rs  of z, z k values for  the two modes the quantity qit 
of one is l a rge r  than that of the other ,  while for  all remaining pa i rs  the quantities are equal, we assume that 
in such a mode the ITH is higher .  We introduce the notation 

b d 

S dz S (z, z )dz = O; c, a), = (0, O, l)  
a 

We now use the identity I(0, z; 0, z) -= 0. F r o m  the definition of I we find 

I~ = I(0, z; 0, z ) +  I(0, z; z, l). (4) 

The f i rs t  t e r m  of the r ight-hand side is equal to zero,  the second is the quantity of heat obtained by the cham- 
be r  segment  f rom 0 - z  f rom the segment  z - t .  F o r  a t empera tu re  curve falling along the channel this will 
be a negative quantity, so that I z will also be negative,  while for  tempera ture  r is ing along the channel,  these 
values will be posit ive.  Thus, with increase  In ITH, the absolute value of I z inc reases .  

By the definition of the above integrals  

It : 1~ + 1 (z, l; 0, 1). (5) 

Since I l = 0, the values of the integrals  Iz and I(z, l; 0, l) are equal h~ magnitude and opposite in sign, i . e . ,  for 
a failing t empera tu re  curve I(z, l; 0, l) is posi t ive,  and for  an increas ing curve,  negative.  

We will integrate Eq. (1) over  the entire chamber  length and over  the length from zero to z. Considering 
that Il = 0, we obtain 

IV (Tt --  Tex) q- Qe = Qt, (6) 

W [T~ ~ T (z)] + Qc (z) = Qt (z) - -  1:, (7) 

whe re 

Qt (z) = i hvr-F (z) eso o (T ~ ~ T 4) dz (8) 
0 

is the heat given off by the gases  in the segment 0 - z  to the heating surface.  

Equation (6) is the balance equation for  the entire chamber ,  while Eq. (7) is the balance equation for the 
gas volume in the interval  0 - z . .  

Internal t r ans fe r  heat may be produced by other  methods:  radiation of energy within the operat ing space,  
d i rec t  t r ans fe r  of a quantity of heat f rom one place in the working space to m~o~her, t r ans fe r  of a mass  of gas 
at different t empera tu re ,  thermal  conductivity. 

We will consider  how the ITH affects heat exchange. We will consider  two heat-exchange modes with dif- 
ferent  ITH and an identical chemical  heat l iberation potential.  The tempera ture  curves  of both modes must 
in te rsec t  each other ,  since if the curve for  mode 1 lies above that of mode 2, then according to Eq. (8), Qtl: > 
Qt2, while under the conditions postulated,  Tex 1 > Tex2, which is not compatible with Eq. (6). We will now 
consider  modes with intersect ing tempera ture  curves  which fall along the chamber  length. We integrate Eq. 
(1) over  the segment z - - l ,  where z is the coordinate of the last  intersect ion of the temperature  curves :  

I(z, l; 0, l ) = Q t ( z - - l ) - - W [ T ( z ) ~ T e x ] ~ Q c ( z _ _ l ) .  (9) 
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F r o m  Eq. (5) I(z,  I; 0, l) i s  pos i t ive ,  and fo r  heat  exchangers  with a high ITH,  i t  will be l a r g e r ;  c o n s e q u e n t l y  
the d i f fe rence  Q t ( z -  l ) -  W [ T ( z ) -  Tex] will be l a r g e r ,  which is  poss ib le  only in the case  where  the curve  ore  r 
segment  z - l fo r  the heat  exchanger  with h igher  ITH goes above the curve  for  the exchanger  with lower  1TH, f r o m  
whence i t  follows that  the temper~/ ture of the exit ing gases  will be h igher ,  and the heat  l ibera t ion  s m a l l e r .  
Thus ,  fo r  the case  of a dec reas ing  t e m p e r a t u r e  dependence,  an i n c r e a s e  in ITH d e c r e a s e s  heat  l ibera t ion .  
T h e r e f o r e ,  m a x i m u m  hea t  l ibe ra t ion  will  occur  in the absence  of ITH (qit = 0). On the o ther  hand, at  m a x i m u m  
ITH,  which c o r r e s p o n d s  to  ident ical  t e m p e r a t u r e  o v e r  the chambe r ,  hea t  l ibera t ion  will be at a m in imu m.  
Analogous cons idera t ions  will  show that  fo r  i nc reas ing  t e m p e r a t u r e  cu rves  ITH i n c r e a s e s  heat  l ibera t ion ,  so 
tha t  the m o s t  unfavorable  condition f r o m  the standpoint of hea t  l ibe ra t ion  is  the case  without ITH, and the m o s t  
f avorab le  condition will be m a x i m u m  ITH,  i .e . ,  the p ic ture  is r e v e r s e d  f rom that  fo r  heat  exchangers  with de-  
c r ea s ing  t e m p e r a t u r e  c u r v e s .  

If we neg lec t  ITH, then the hea t -exchange  equation will have the f o r m  

dr :qc h~,_~ (z) 
dz W + W es~~ (T~ -- T~) = 0. (i0) 

The quantity h~_F(Z) is  a function of z. According to the pr inciple  of addi t iveness ,  

S = nk (H, 
0 

The product  of this quantity with esa0, according  to the phys ica l  meaning of the coeff ic ients ,  will equal ~a H. 
Making use of these  fac t s ,  we then find 

l 

S h.~_ F (z)+dz _ ,~a,H ea H. (11) 
8SO0 g s 

0 

In the p a r t i c u l a r  case  qc = 0 

F o r  T s = 0 

l 

Tit dT __ %% f hr,F (z) dz _ ~a H 
T + -  T~ W . W (12) 

T= {) 

0 = 1/~1 + 3 ~ r ,  (13) 
e x  

where  ~ r  = eaa0 T 3 / w  is  the radia t ion  p a r a m e t e r .  This case  is of i n t e re s t  because  a solution can be obtained 
without any a s sumpt ions  as  to the f o r m  of the z dependence of h~_F(Z).  If qc i s  not equal  to ze ro ,  then fo r  an 
exact  solution it i s  n e c e s s a r y  to know this  dependence,  although h~_F(Z) usually v a r i e s  lit t le with length so 

r = (ea /es )$I I .  Then we may  use some mean  value hv_F(Z) m 

dr fqc + ~a~P II (r ~_  TI) = 0. (14) 
dz W W 

~ o r  m a x i m u m  ITH the heat-exchange equation has  the f o r m  

H~a(r&-- r;) = Qe + ~ ( r , -  rex), (15) 

and for  Q c =  0 

n(0~x - -  0~) + Oex-- 1 = 0. (16) 

F r o m  the above it  fol lows that  fo r  hea t  exchangers  with dec reas ing  t e m p e r a t u r e  cu rves  the m a x i m u m  heat  
l ibera t ion is  d e t e r m i n e d  by Eqs.  (10) and (14), and min ima l  l ibera t ion by Eq. (15) or  Eq. (16), while for  in-  
c reas ing  t e m p e r a t u r e  cu rves  m a x i m u m  heat  l ibera t ion is  de te rmined  by  Eq. (15), and the m i n i m u m v a l u e  by 

Eq.  (10). 

F igure  1 shows the t e m p e r a t u r e  of the exi t ing gases  as a function of ~ r  fo r  a dec reas ing  t e m p e r a t u r e  
cu rve  for  the c a s e s  of m a x i m u m  (0 t) and m i n i m u m  (02) heat  l ibera t ion .  Moreove r ,  the s ame  dependence is  
shown for  the case  of heat  exchange in a plane channel with cons idera t ion  of in terna l  heat  t r a n s f e r  by radia t ion,  
as obtained to a high accu racy  by zone method calcula t ions .  At the channel input and output the gases  are  a s -  
sumed  bounded by adiabat ic  s u r f a c e s .  Curves  4 and 5 give the m a x i m u m  loss  in heat  l iberat ion due to mixing,  
f i r s t  as a f rac t ion  of WT1, Yl = 02 - 01, and second,  as a f rac t ion  of the heat  used in the chambe r  Y2 = (02 - 01)/ 
(1 - 01). A compar i son  of cu rves  1 and 3 shows that  the loss  in heat  [ ibera t iondue  to ITH by radia t ion i s  smal l .  
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F ig .  1. Ex i t i ng  gas t empera tu re :  1) w i thout  IT t I  
(scale I) ; 2) with m a x i m u m  ITH (scale I); 3) with 
I T H b y  radiat ion;  4) YI (scale II); 5) Y2 (scale II). 

At low ~r r i t  is  equal to zero .  At some value of ~ r  it begins  to inc rease  with inc rease  in 7rr, reaching  a max i -  
m u m  value of about 3.5%. 

The ene rgy  equation can a lso  be wri t ten  in the following fo rm [1, 2]: 

d r  + q~ dS r (z) _ ~r  (z) ~rI , (l'Z) 
f dz dz f 

where Ir(z) ,  Er(Z) a re  the resu l tan t  radiant  f luxes along the channel wall and along the heating su r f ace ,  Eq. (1). 

We in tegra te  Eq. (17) with l imi t s  0 and z: 
z 

IV (Ti--  T (z)) + Qc (z) -}- (I, - -  1 (z)) f = r .f Er (z) dz. (1 S) 
0 

Using Eqs .  (1), (3), (17), we obtain 
t 

r ~ r 4 dlr hv_ v (T k -~. - - - -  (19) Er ~II = by_ #, (z) esa o (T ~ T4 s) - ) T ~) dzk ~ [  dz 
0 

Consider ing that  the init ial  section is  adiabat ic  (Irl  = 0), we in tegra te  Eq~ (19) with l imi t s  0 and z: 

Q~(z) = ,n  S~.~dz = Q t ( z ) ~  5 [-~r (z). (20) 
0 

In Eq. (20) the t e r m  Qt is  the ,value of the heat  l ibera t ion by the gas  in the segment  0 - z ,  while Qhs(Z) 
is  the resu l tan t  heat  exchange of the heat ing su r face  ove r  the same  segment .  

F o r  quanti tat ive evaluat ions ,  compute r  calculat ions of heat  exchange were  p e r f o r m e d  by the zone method 
for  a gas  flow moving in a p l anechanne l  1 m in height and 4 m in length, bounded above and below by black 
heating su r faces  with end faces  f o rm ed  by adiabat ic  walls  pe rpend icu la r  to the flow direct ion and pe rmeab le  to 
the gas .  It was a s s u m e d  that  the absorpt ion  coefficient  of the medium a = 0.2 m - l ,  W/%T~ = 2. Calculations 
were  p e r f o r m e d  for  a 1 -m channel width. 

z 

W Q t (z) VII t" Etdz (3), ]r l~ Figure  2 shows the quanti t ies (r i - -T  (z)) ~ (curve 1), a--0T--~- (2), a ~  ,J ~0~,- ( ( 4 ) ,  a0T~ (5) 

0 

as functions of posit ion in the channel.  

Calculat ions show that  the quantity h ~ _  F (z) does not va ry  over  the middle half of the channel,  but drops  
to 2.6% of i ts  midchannel  value at the endpoints .  

The ma thema t i ca l  express ion  for  the computation equation using a s implif ied scheme coincides with Eq. 
(14), but the p rob l em  of choice of coeff icients  % in the theory  of the s impl i f ied method has not been reso lved .  
The las t  t e r m  in Eq. (14) defines the quantity of heat  l ibe ra ted  by an e lementa l  volume to the ent i re  heating 
su r face ,  and in the s impl i f ied method it r e p r e s e n t s  the value of the local t he rma l  loading of the heating s u r -  
face .  Use of the s impl i f ied  method in t roduces  e r r o r s  in calculat ing local values  of the t he rma l  s t r e s s  of the 
heating su r f ace ,  indicating more  nonuniformity  than ex i s t s  in rea l i ty  (Fig. 3). 
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2) heat liberation from gas to  
entire heating surface;  3) heating surface heat sensitivity; 
4) Ir/~0T~ ; 5) --I z/a0T~l vs position along channel, z, zone. 

Fig. 3. Quantity Er/a0T ~ vs position along channel: 1) exact 
method; 2) simplified method. 

In pract ice ,  Eq. (14) can be recommended for calculation of radiant heat exchange. The temperature of 
the medium al<)ng the length of the chamber can be found with sufficient accuracy with Eq. (14). Local values 
of heating surface thermal loading can be found with the zonal method from the specified temperature field, 
using normal methods for calculating radiant heat exchange. Thus, we avoid the necessity of solving a com- 
plex problem, the determination of radiant heat exchange in a moving medium with unknown temperature field. 

Returning to Fig. 2, we note that with use of the method described above, curves 1 and 2 coincide. Using 
the older simplified method, curves 1, 2, and 3 coincide. 

N O T A T I O N  

W, water equivalent of gas flow; f, flow section; T, gas temperature;  Tex, temperature of exiting 
gases; Ts, temperature of heating surface; TI, gas temperature at channel inlet; 0ex = Tex/T1, 0 s = Ts/T1, 
dimensionless temperatures;  qc, chemical heat l iberation per  unit volume; Qe(z), chemical heat liberation in 
channel segment from 0 to z; es, emissivity of heating surface; ~a, apparent emissivity of chamber; a a, 
apparent radiant heat exchange coefficient; 1], channel per imeter  section; r ratio of heating surface to lat- 
e ra l  surface of channel; E r ,  resultant heat exchange density; Qhs(Z), value of resultant heat exchange over 
channel segment from 0 to z; I r ,  difference between oppositely directed radiant heat fluxes; H~_F(H, V), 
resolving coefficient for mutual radiant heat exchange between volume and surface. 
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