3, 1=U=goy [ 24+9+039--2) a7
Ty | gy IR gy | gy bp/lo} dy nT k= (10)
In the limit cases of pure diffusion (g = 1) and pure specular (g = 0) reflection, we obtain
d
lgy==1.69p (1 — 0.337bp) W!n T, (11)
3 d .
Ug = Z—p,(l —0.26p) a5 InT. (12)

Formulas (10)-(11) differ from the corresponding formulas for a rarefied gas by terms proportional to
bp. As p — 0, expressions (10)-(12) go over into the corresponding expressions in [2].

Let us determine the thermal slip coefficient as follows:

d InT.
Y

Uy = kxzpl
Then it follows from (10)-(12) that the thermal slip coefficient kg; is less in dense than in rarefied gases.
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PECULIARITIES IN THE ONE-DIMENSIONAL MODEL
OF RADIANT HEAT EXCHANGE

A, 8. Nevskii and M. M. Mel'man UDC 536.3,001,24

Radiant heat exchange is considered in a one-dimensional model. The role of internal heat
transfer is considered, Maximum and minimum heat liberation values are determined, A
method for calculation is proposed.

The most widely used model for study of radiant heat exchange in a furnace is the one-dimensional model.
In such a model the furnace operating space is likened to a channel, along which the exhaust gases move. The
gas temperature along the directions perpendicular to the motion is assumed constant. There is no theoretical
justification for the use of such a model.

We will write the energy equation of an elementary volume in the following form:
i

W dT rE (2 1
7 & +qde= _l_fig g0 (T4 — T5) T Sqit.(z' 2,) dzy, @
0
where
T
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All-Union Scientific-Research stitute of Metallurgical Thermotechnology, Sverdlovsk. Translated
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H{‘}_F(z, H) is the resolving coefficient for mutual radiant heat exchange between the elemental volume and the
surface H;

9 @ z) = hi_, (@ 2) (T4 (@) — T¢ (z)); (3)

T
RI = Mm vy (@& %)
[ e
V=V azaz~0 Az, Az,

where H{;_v(z, zy) is the resolving coefficient for mutual radiant heat exchange between elementary volumes.
From Eq. (3) it follows that
Qit (Z, Zk) = - qit (zk» 2)‘

The quantity Q;¢ = qj1(z, zi)AzAzy, defines the quantity of heat obtained by the elemental volume Az, from
another volume, We will term this guantity the internal transfer heat (ITH),

If we have two modes of heat exchange with identical values of gj¢ for all the gases z, 7|, we then assume
that the ITH is identical for all. But if for all or some pairs of z, zi values for the two modes the quantity gt
of one is larger than that of the other, while for all remaining pairs the quantities are equal, we assume that
in such a mode the ITH is higher. We introduce the notation

b d
jdzjqit(z, z)da=1{, b; c, d), 1,=1(0, z 0, ).

We now use the identity I1(0, z; 0, z) =0. From the definition of I we find
I,=10,20 24+10, z 2 0. (4)

The first term of the right-hand side is equal to zero, the second is the guantity of heat obtained by the cham-
ber segment from 0—z from the segment z—]. For a temperature curve falling along the channel this will

be a negative quantity, so that I, will also be negative, while for temperature rising along the channel, these
values will be positive, Thus, with increase in ITH, the absolute value of I; increases.

By the definition of the above integrals
L=141@ 10, ). ' (5)

Since Iy = 0, the values of the integrals I, and I(z, !; 0, [) are equal in magnitude and opposite in sign, i.e., for
a falling temperature curve I(z, /; 0, I) is positive, and for an increasing curve, negative,

We will integrate Eq. (1) over the entire chamber length and over the length from zero to z. Considering
that Iz = 0, we obtain

W (T, — Tex) + Q¢ = Q;. (5
W[Ti'—T(z)]+Qc(Z) =Q¢(a — 1, 7
where
Q@ = [ A @egoT—Tdz @
1]

is the heat given off by the gases in the segment 0—z to the heating surface.

Equation (6) is the balance equation for the entire chamber, while Eq. (7) is the balance equation for the
gas volume in the interval 0—z., .

Internal transfer heat may be produced by other methods: radiation of energy within the operating space,
direct transfer of a quantity of heat from one place in the working space to another, transfer of a2 mass of gas
at different temperature, thermal conductivity,

We will consider how the ITH affects heatexchange. We will consider two heat-exchange modes with dif-
ferent ITH and an identical chemical heat liberation potential. The temperature curves of both modes must
intersect each other, since if the curve for mode 1 lies above that of mode 2, then according to Eq. (8), Qt >
Qtz , while under the conditions postulated, Tex; > Texs Which is not compatible with Eq, (6), We will now
consider modes with intersecting temperature curves which fall along the chamber length, We integrate Eq.
(1) over the segment z—1, where z is the coordinate of the last intersection of the temperature curves:

1@ 50, ) =Que— ) —WIT (@) — Tex | — Q 4z — ). ©
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From Eq. (5) I(z, I; 0, I) is positive, and for heat exchangers with a high ITH, it will be larger; consequently
the difference Q¢(z — 1) — W[T(z) — Tex] Will be larger, which is possible only in the case where the curve over
segment z — ! for the heat exchanger with higher ITH goes above the curve for the exchanger with lower ITH, from
whence it follows that the temperature of the exiting gases will be higher, and the heat liberation smaller,
Thus, for the case of a decreasing temperature dependence, an increase in ITH decreases heat liberation,
Therefore, maximum heat liberation will occur in the absence of ITH (gijt = 0). On the other hand, at maximum
ITH, which corresponds to identical temperature over the chamber, heat liberation will be at a minimum,
Analogous considerations will show that for increasing temperature curves ITH increases heat liberation, so
that the most unfavorable condition from the standpoint of heat liberation is the case without ITH, and the most
favorable condition will be maximum ITH, i.e., the picture is reversed from that for heat exchangers with de-
creasing temperature curves.,

If we neglect ITH, then the heat-exchange equation will have the form

dT fa R @ -
— ___Wc + &0 (T — T =0. (10)

The quantity h{;_g(2) is a function of z. According to the principle of additiveness,
14
5 B p@dz=H} . (H, V).
0

The product of this quantity with £g0,, according to the physical meaning of the coefficients, will equal o4H,
Making use of these facts, we then find
i

T g — S8 _ fagy 1y
g by g (2)dz o0, .
i}
In the particular case qg = 0
T, {
" daT £40y ‘ - aff .
5 TV — T; = —"“7" j‘ hi_F @ dz 4 (12)
T: 0
For Tg =0
3 ,——
eef 17v/'1 4+ 3y, (13)

where mp = saooT?{ /W is the radiation parameter. This case is of interest because a solution can be obtained

without any assumptions as to the form of the z dependence of h%—-F (z). If qc is not equal to zero, then for an

exact solution it is necessary to know this dependence, although hi;_y (z) usually varies little with length so
we may use some mean value h{/-F (z)m = (Ea/ ss)z/)II, Then

id:l_ — i‘%_ + _Ga‘;’_EL (T+—T%) =0. (14)
For maximum ITH the heat-exchange equation has the form
Ho (T TH = Q¢ + W (T1— Tex)s (15)
and for Q¢ = 0
(08 — 04) + Oy 1 = 0. (16)

From the above it follows that for heat exchangers with decreasing temperature curves the maximum heat
liberation is determined by Eqgs. (10) and (14), and minimal liberation by Eq. (15) or Eq. (16), while for in- ’
creasing temperature curves maximum heat liberation is determined by Eq. (15), and the minimum  value by

Eq. (10). . .

Figure 1 shows the temperature of the exiting gases as a function of 7y for a decreasing temperature
curve for the cases of maximum (8,) and minimum (6,) heat liberation., Moreover, the same dependence is
shown for the case of heat exchange in a plane channel with consideration of internal heat transfer by radiation,
as obtained to a high accuracy by zone method calculations., At the channel input and output the gases are as-
sumed bounded by adiabatic surfaces. Curves 4 and 5 give the maximum loss in heat liberation due to mixing,
first as a fraction of WTy, y;= 0, — 6, and second, as a fraction of the heat used in the chamber y, = 562 -0)/
(1 - 6). A comparisonof curves 1 and 3 shows that the loss in heat liberation due to ITH by radiation is small,
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Fig. 1. Exiting gas temperature: 1) without ITH
(scale I); 2) with maximum ITH (scale I}; 3) with
ITH by radiation; 4) y, (scale II); 5) y, (scale II}.

At low 7y it is equal to zero. At some value of 7y it begins to increase with increase in 7y, reaching a maxi-
mum value of about 3.5%.

The energy equation can also be written in the following form (1, 2}:

W dT _ 4@ _ E@yn y
T T Ty P an

where I.(z), Ex(z) are the resultant radiant fluxes along the channel wall and along the heating surface, Eq. (1),

We integrate Eq. (17) with limits 0 and z:
W({T—T@)+ Q@+ (h—1E)f=1I g E () dz. (18)

Using Eqgs. (1), (3}, (17), we obtain
!
I
F, 4T = hE_, (e 00 (T— T4 — th (T T8 day —f .‘f;_ . (19)
0

Considering that the initial section is adiabatic (Iy; = 0), we integrate Eq. {1 9) with limits 0 and z:
Qm@=MW%a=m@~nemw- (20)
0

In Eq. (20) the term Q¢ is the value of the heat liberation by the gas in the segment 0—z, while Qp<(z)
is the resultant heat exchange of the heating surface over the same segment.

For quantitative evaluations, computer calculations of heat éxchange were performed by the zone method
for a gas flow moving in a plane channel 1 m in height and 4 m in length, bounded above and below by black
heating surfaces with end faces formed by adiabatic walls perpendicular to the ﬂow direction and permeable to
the gas. It was assumed that the absorption coefficient of the medium o = 0,2 m™1, W/ O'OTS 2. Calculations
were performed for a 1-m channel width.

152? Epdz (3), *7"" @), — L

Oply

Qt (Z)

Figure 2 shows the quantities (T+—T (2)) — 77— (curve 1), —7 (2),

as functions of position in the channel,

Calculations show that the gquantity hV F(z) does not vary over the middle half of the channel, but drops
to 2.6% of its midchannel value at the endpoints,

The mathematical expression for the computation equation using a simplified scheme coincides with Eq,
(14), but the problem of choice of coefficients 0, in the theory of the simplified method has not been resolved.
The last term in Eq. (14) defines the quantity of heat liberated by an elemental volume to the entirve heating
surface, and in the simplified method it represents the value of the local thermal loading of the heating sur-
face. Use of the simplified method introduces errors in calculating local values of the thermal stress of the
heating surface, indicating more nonunifofmity than exists in reality (Fig. 3).
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Fig. 2, 1) Heat loss by gas; 2) heat liberation from gas to
entire heating surface; 3) heating surface heat sensitivity;
4) 1p./0,T%; 5) —I, /6,T} vs position along channel. z, zone.

Fig. 3. Quantity E./ UOT% vs position along channel: 1) exact
method; 2) simplified method,

In practice, Eq. (14) can be recommended for calculation of radiant heat exchange, The temperature of
the medium along the length of the chamber can be found with sufficient accuracy with Eq, (14). Local values
of heating surface thermal loading can be found with the zonal method from the specified temperature field,
using normal methods for calculating radiant heat exchange, Thus, we avoid the necessity of solving a com-
plex problem, the determination of radiant heat exchange in a moving medium with unknown temperature field.

Returning to Fig. 2, we note that with use of the method described above, curves 1 and 2 coincide. Using
the older simplified method, curves 1, 2, and 3 coincide,

NOTATION

W, water equivalent of gas flow; f, flow section; T, gas temperature; Tex, temperature of exiting

diménsionless temperatures; q., chemical heat liberation per unit volume; Q.(z), chemieal heat liberation in
channel segment from 0 to z; g, emissivity of heating surface; €43, apparent emissivity of chamber; oy,
apparent radiant heat exchange coefficient; I, channel perimeter section; ¥, ratio of heating surface to lat-
eral surface of channel; Ey, resultant heat exchange density; Qpg(z), value of resultant heat exchange over
channel segment from 0 to z; I,, difference between oppositely directed radiant heat fluxes; H{,_F(H, V),
resolving coefficient for mutual radiant heat exchange between volume and surface.

LITERATURE CITED

1. A. 8, Nevskii, Teploenergetika, No. 8, 94 (1961).
2. A, S. Nevskii, Radiant Heat Exchange in Furnaces and Combustion Chambers [in Russian], Metallurgiya,
Moscow (1971), «

940



